Event-related potentials (ERPs) elicited by transient nociceptive stimuli in humans are largely sensitive to bottom-up novelty induced, for example, by changes in stimulus attributes (e.g., modality or spatial location) within a stream of repeated stimuli. Here we aimed 1) to test the contribution of a selective change of the intensity of a repeated stimulus in determining the magnitude of nociceptive ERPs, and 2) to dissect the effect of this change of intensity in terms of "novelty" and "saliency" (an increase of stimulus intensity is more salient than a decrease of stimulus intensity). Nociceptive ERPs were elicited by trains of three consecutive laser stimuli (S1-S2-S3) delivered to the hand dorsum at a constant 1-s interstimulus interval. Three, equally spaced intensities were used: low (L), medium (M), and high (H). While the intensities of S1 and S2 were always identical (L, M, or H), the intensity of S3 was either identical (e.g., HHH) or different (e.g., MMH) from the intensity of S1 and S2. Introducing a selective change in stimulus intensity elicited significantly larger N1 and N2 waves of the S3-ERP but only when the change consisted in an increase in stimulus intensity. This observation indicates that nociceptive ERPs do not simply reflect processes involved in the detection of novelty but, instead, are mainly determined by stimulus saliency.